物理层的作用

现有的计算机网络中的硬件设备和传输媒体的种类非常繁多,而通信手段也有许多不同方式。物理层的作用正是要尽可能地屏蔽掉这些传输媒体和通信手段的差异,使物理层上面的数据链路层感觉不到这些差异,这样就可使数据链路层只需要考虑如何完成本层的协议和服务,而不必考虑网络具体的传输媒体和通信手段是什么。

数据在计算机内部多采用并行传输方式。但数据在通信线路(传输媒体)上的传输方式一般都是串行传输 (这是出于经济上的考虑),即逐个比特按照时间顺序传输。因此物理层还要完成传输方式的转换。

数据通信系统

一个数据通信系统可划分为三大部分,即源系统 (或发送端、发送方 )、传输系统 (或传输网络 )和目的系统 (或接收端、接收方 )
image.png

源系统

  • 源点 (source) 源点设备产生要传输的数据,例如,从计算机的键盘输入汉字,计算机产生输出的数字比特流。源点又称为源站 ,或信源 。
  • 发送器  通常源点生成的数字比特流要通过发送器编码后才能够在传输系统中进行传输。典型的发送器就是调制器。现在很多计算机使用内置的调制解调器(包含调制器和解调器),用户在计算机外面看不见调制解调器。

目的系统

  • 接收器  接收传输系统传送过来的信号,并把它转换为能够被目的设备处理的信息。典型的接收器就是解调器,它把来自传输线路上的模拟信号进行解调,提取出在发送端置入的消息,还原出发送端产生的数字比特流。
  • 终点 (destination) 终点设备从接收器获取传送来的数字比特流,然后把信息输出(例如,把汉字在计算机屏幕上显示出来)。终点又称为目的站 ,或信宿 。

传输系统

在源系统和目的系统之间的传输系统可以是简单的传输线,也可以是连接在源系统和目的系统之间的复杂网络系统。我们之后的内容都将围绕传输系统

信道

模拟信号 与 数字信号

在讨论信道前我们先来看看信号 (signal)的种类

  • 模拟信号 ,或连续信号 ——代表消息的参数的取值是连续的。例如在图2-1中,用户家中的调制解调器到电话端局之间的用户线上传送的就是模拟信号。
  • 数字信号 ,或离散信号 ——代表消息的参数的取值是离散的。例如在图2-1中,用户家中的计算机到调制解调器之间,或在电话网中继线上传送的就是数字信号。在使用时间域(或简称为时域)的波形表示数字信号时,代表不同离散数值的基本波形就称为码元 。在使用二进制编码时,只有两种不同的码元,一种代表0状态而另一种代表1状态。

信道与调制

信道一般都是用来表示向某一个方向传送信息的媒体。因此,一条通信电路往往包含一条发送信道和一条接收信道。

来自信源的信号常称为基带信号 (即基本频带信号)。像计算机输出的代表各种文字或图像文件的数据信号都属于基带信号。基带信号往往包含有较多的低频成分,甚至有直流成分,而许多信道并不能传输这种低频分量或直流分量。为了解决这一问题,就必须对基带信号进行调制 (modulation)。

调制可分为两大类。一类是仅仅对基带信号的波形进行变换,使它能够与信道特性相适应。变换后的信号仍然是基带信号。这类调制称为基带调制 。由于这种基带调制是把数字信号转换为另一种形式的数字信号,因此大家更愿意把这种过程称为编码 (coding)。另一类调制则需要使用载波 (carrier)进行调制,把基带信号的频率范围搬移到较高的频段,并转换为模拟信号,这样就能够更好地在模拟信道中传输。经过载波调制后的信号称为带通信号 (即仅在一段频率范围内能够通过信道),而使用载波的调制称为带通调制 。

信道的容量

首先我们需要明确,何实际的信道都不是理想的,都不可能以任意高的速率进行传送

数字通信的优点就是:虽然信号在信道上传输时会不可避免地产生失真,但在接收端只要我们从失真的波形中能够识别出原来的信号,那么这种失真对通信质量就没有影响。例如,图2-4(a)表示信号通过实际的信道传输后虽然有失真,但在接收端还可识别并恢复出原来的码元。但图2-4(b)就不同了,这时信号的失真已很严重,在接收端无法识别码元是1还是0。码元传输的速率越高,或信号传输的距离越远,或噪声干扰越大,或传输媒体质量越差,在接收端的波形的失真就越严重。
image.png

从概念上讲,限制码元在信道上的传输速率的因素有以下两个。

  1. 信道能够通过的频率范围

如果信号中的高频分量在传输时受到衰减,那么在接收端收到的波形前沿和后沿就变得不那么陡峭了,每一个码元所占的时间界限也不再是很明确的,而是前后都拖了“尾巴”。这样,在接收端收到的信号波形就失去了码元之间的清晰界限。这种现象叫做码间串扰

我们需要知道的就是:在任何信道中,码元传输的速率是有上限的,传输速率超过此上限,就会出现严重的码间串扰的问题,使接收端对码元的判决 (即识别 )成为不可能 。

如果信道的频带越宽,也就是能够通过的信号高频分量越多,那么就可以用更高的速率传送码元而不出现码间串扰。

  1. 信噪比

噪声存在于所有的电子设备和通信信道中,但噪声的影响是相对的。如果信号相对较强,那么噪声的影响就相对较小。因此,信噪比就很重要。所谓信噪比就是信号的平均功率和噪声的平均功率之比,常记为S/N ,并用分贝(dB)作为度量单位。即:image.png
例如,当S/N =10时,信噪比为10dB,而当S/N =1000时,信噪比为30dB。

在1948年,信息论的创始人香农(Shannon)推导出了著名的香农公式 。香农公式指出:信道的极限信息传输速率 C 是
image.png
式中,W 为信道的带宽(以Hz为单位);S 为信道内所传信号的平均功率;N 为信道内部的高斯噪声功率。
故而信道的带宽或信道中的信噪比越大,信息的极限传输速率就越高

传输媒介

传输媒体 也称为传输介质或传输媒介,它就是数据传输系统中在发送器和接收器之间的物理通路。传输媒体可分为两大类,即导引型传输媒体非导引型传输媒体

  • 导引型传输媒体:电磁波被导引沿着固体媒体(铜线或光纤)传播
  • 非导引型传输媒体:指自由空间,在非导引型传输媒体中电磁波的传输常称为无线传输

双绞线

双绞线也称为双扭线,是最古老但又是最常用的传输媒体。把两根互相绝缘的铜导线并排放在一起,然后用规则的方法绞合 (twist)起来就构成了双绞线

  • 绞合可减少对相邻导线的电磁干扰。
  • 为了提高双绞线抗电磁干扰的能力,可以在双绞线的外面再加上一层用金属丝编织成的屏蔽层。这就是屏蔽双绞线

image.png

美国电子工业协会EIA和电信行业协会TIA联合发布了标准EIA/TIA-568(商用建筑物电信布线标准)1995年将布线标准更新为EIA/TIA-568-A。此标准规定了5个种类的UTP标准(从1类线到5类线)。截至2021/12/19日,最高为8类线,支持2000MHz,40Gbps的传输速率
image.png

同轴电缆

同轴电缆由内导体铜质芯线(单股实心线或多股绞合线)、绝缘层、网状编织的外导体屏蔽层(也可以是单股的)以及保护塑料外层所组成。由于外导体屏蔽层的作用,同轴电缆具有很好的抗干扰特性,被广泛用于传输较高速率的数据。
image.png
在局域网发展的初期曾广泛地使用同轴电缆作为传输媒体。但随着技术的进步,在局域网领域基本上都采用双绞线作为传输媒体。目前同轴电缆主要用在有线电视网的居民小区中。同轴电缆的带宽取决于电缆的质量。(10年前带宽已接近1GHz)

光缆

光纤通信就是利用光导纤维(以下简称为光纤)传递光脉冲来进行通信。有光脉冲相当于1,而没有光脉冲相当于0。由于可见光的频率非常高,约为10^8 MHz的量级,因此一个光纤通信系统的传输带宽远远大于目前其他各种传输媒体的带宽。

现代的生产工艺可以制造出超低损耗的光纤,即做到光线在纤芯中传输数公里而基本上没有什么衰耗。这一点乃是光纤通信得到飞速发展的最关键因素。
image.png
图中只画了一条光线。实际上,只要从纤芯中射到纤芯表面的光线的入射角大于某个临界角度,就可产生全反射。因此,可以存在多条不同角度入射的光线在一条光纤中传输。这种光纤就称为多模光纤 (图2-10(a))。光脉冲在多模光纤中传输时会逐渐展宽,造成失真。因此多模光纤只适合于近距离传输。若光纤的直径减小到只有一个光的波长,则光纤就像一根波导那样,它可使光线一直向前传播,而不会产生多次反射。这样的光纤称为单模光纤 (图2-10(b))。单模光纤的纤芯很细,其直径只有几个微米,制造起来成本较高。同时单模光纤的光源要使用昂贵的半导体激光器,而不能使用较便宜的发光二极管。但单模光纤的衰耗较小,在100Gbit/s的高速率下可传输100公里而不必采用中继器。
image.png

无线传输

短波通信(即高频通信)主要是靠电离层的反射。但电离层的不稳定所产生的衰落现象和电离层反射所产生的多径效应 (3) ,使得短波信道的通信质量较差。因此,当必须使用短波无线电台传送数据时,一般都是低速传输,即速率为一个标准模拟话路传几十至几百比特/秒。只有在采用复杂的调制解调技术后,才能使数据的传输速率达到几千比特/秒。

无线电微波通信在数据通信中占有重要地位。微波的频率范围为300MHz~300GHz(波长1m~1mm),但主要使用2~40GHz的频率范围。微波在空间主要是直线传播。由于微波会穿透电离层而进入宇宙空间,因此它不像短波那样可以经电离层反射传播到地面上很远的地方。传统的微波通信主要有两种方式,即地面微波接力通信 和卫星通信 。

由于微波在空间是直线传播的,而地球表面是个曲面,因此其传播距离受到限制,一般只有50km左右。但若采用100m高的天线塔,则传播距离可增大到100km。为实现远距离通信必须在一条微波通信信道的两个终端之间建立若干个中继站。中继站把前一站送来的信号经过放大后再发送到下一站,故称为“接力 ”。大多数长途电话业务使用4~6GHz的频率范围。

信道复用技术

复用 (multiplexing)是通信技术中的基本概念。图2-13(a)表示A 1 ,B 1 和C 1 分别使用一个单独的信道和A 2 ,B 2 和C 2 进行通信,总共需要三个信道。但如果在发送端使用一个复用器,就可以让大家合起来使用一个共享信道进行通信。在接收端再使用分用器,把合起来传输的信息分别送到相应的终点。图2-13(b)是复用的示意图。当然复用要付出一定代价(共享信道由于带宽较大因而费用也较高,再加上复用器和分用器)。但如果复用的信道数量较大,那么在经济上还是合算的。

  • 复用器 (multiplexer)-> 分用器 (demultiplexer)他们成对出现

image.png

频分复用

频分复用 FDM(Frequency Division Multiplexing)指用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。

  • 频分复用的所有用户在同样的时间占用不同的带宽资源(请注意,这里的“带宽”是频率带宽而不是数据的发送速率)

image.png

时分复用

时分复用 TDM(Time Division Multiplexing)是将时间划分为一段段等长的时分复用帧(TDM帧)。每一个时分复用的用户在每一个TDM帧中占用固定序号的时隙。

  • 时分复用的所有用户是在不同的时间占用同样的频带宽度

image.png

由于计算机数据的突发性质,一个用户对已经分配到的子信道的利用率一般是不高的。当使用时分复用系统传送计算机数据时,当某用户暂时无数据发送时,在时分复用帧中分配给该用户的时隙只能处于空闲状态,其他用户即使一直有数据要发送,也不能使用这些空闲的时隙。这就导致复用后的信道利用率不高。

image.png

  • 统计时分复用STDM(Statistic TDM)
    统计时分复用运用了集中器 (concentrator)

image.png

各用户有了数据就随时发往集中器的输入缓存,然后集中器按顺序依次扫描输入缓存,把缓存中的输入数据放入STDM帧中。对没有数据的缓存就跳过去。当一个帧的数据放满了,就发送出去。因此,STDM帧不是固定分配时隙,而是按需动态地分配时隙。因此统计时分复用可以提高线路的利用率。因此统计复用又称为异步时分复用 ,而普通的时分复用称为同步时分复用

波分复用

波分复用 WDM(Wavelength Division Multiplexing)就是光的频分复用 。由于光载波的频率很高,因此习惯上用波长而不用频率来表示所使用的光载波。这样就得出了波分复用这一名词。最初,人们只能在一根光纤上复用两路光载波信号。这种复用方式称为波分复用 WDM。随着技术的发展,在一根光纤上复用的光载波信号的路数越来越多。现在已能做到在一根光纤上复用几十路或更多路数的光载波信号。于是就使用了密集波分复用 DWDM(Dense Wavelength Division Multiplexing)这一名词。

image.png
上表示8路传输速率均为2.5Gbit/s的光载波(其波长均为1310nm)。经光的调制后,分别将波长变换到1550~1557nm,每个光载波相隔1nm。(这里只是为了说明问题的方便。实际上,对于密集波分复用,光载波的间隔一般是0.8或1.6nm。)这8个波长很接近的光载波经过光复用器 (波分复用的复用器又称为合波器 )后,就在一根光纤中传输。因此,在一根光纤上数据传输的总速率就达到了8×2.5Gbit/s=20Gbit/s。但光信号传输了一段距离后就会衰减,因此对衰减了的光信号必须进行放大才能继续传输。

在地下铺设光缆是耗资很大的工程。因此人们总是在一根光缆中放入尽可能多的光纤(例如,放入100根以上的光纤),然后对每一根光纤使用密集波分复用技术。因此,对于具有100根速率为2.5Gbit/s光纤的光缆,采用16倍的密集波分复用,得到一根光缆的总数据率为100×40Gbit/s,或4Tbit/s。这里的T为10^12 ,中文名词是“太”,即“兆兆”。

码分复用

码分复用CDM (Code Division Multiplexing)是另一种共享信道的方法。实际上,人们更常用的名词是码分多址CDMA (Code Division Multiple Access)每一个用户可以在同样的时间使用同样的频带进行通信。由于各用户使用经过特殊挑选的不同码型,因此各用户之间不会造成干扰 。

码分复用最初用于军事通信,因为这种系统发送的信号有很强的抗干扰能力,其频谱类似于白噪声,不易被敌人发现 。现在已广泛使用在民用的移动通信中,特别是在无线局域网中

非对称数字用户线

非对称数字用户线 ADSL(Asymmetric Digital Subscriber Line)技术是用数字技术对现有的模拟电话用户线进行改造,把0~4kHz低端频谱留给传统电话使用,而把原来没有被利用的高端频谱留给用户上网使用。由于用户在上网时主要是从互联网下载各种文档,而向互联网发送的信息量一般都不太大,因此ADSL的下行(从ISP到用户)带宽都远远大于上行(从用户到ISP)带宽。“非对称”这个名词就是这样得出的。

ADSL的传输距离取决于数据率用户线的线径(用户线越细,信号传输时的衰减就越大)此外,ADSL所能得到的最高数据传输速率还与实际的用户线上的信噪比密切相关。

ADSL在用户线(铜线)的两端各安装一个ADSL调制解调器。这种调制解调器的实现方案有许多种。我国目前采用的方案是离散多音调 DMT(Discrete Multi-Tone)调制技术。这里的“多音调”就是“多载波”或“多子信道”的意思。DMT调制技术采用频分复用的方法,把40kHz以上一直到1.1MHz的高端频谱划分为许多子信道,其中25个子信道用于上行信道,而249个子信道用于下行信道,并使用不同的载波(即不同的音调)进行数字调制。

当ADSL启动时,用户线两端的ADSL调制解调器就测试可用的频率、各子信道受到的干扰情况,以及在每一个频率上测试信号的传输质量。这样就使ADSL能够选择合适的调制方案以获得尽可能高的数据率。可见ADSL不能保证固定的数据率 。

  • ADSL最大的好处就是可以利用现有电话网中的用户线(铜线),而不需要重新布线。有许多老的建筑,电话线都早已存在。尽管ADSL仍在发展(ADSL2,SRA无缝速率自适应,xDSL),但新建筑中已经很少看到他的影子了

光纤同轴混合网

光纤同轴混合网 (HFC网,HFC是Hybrid Fiber Coax的缩写)是在目前覆盖面很广的有线电视网的基础上开发的一种居民宽带接入网,除可传送电视节目外,还能提供电话、数据和其他宽带交互型业务。

HFC网把原有线电视网中的同轴电缆主干部分改换为光纤(图2-23)。光纤从头端连接到光纤结点 (fiber node)。在光纤结点光信号被转换为电信号,然后通过同轴电缆传送到每个用户家庭。从头端到用户家庭所需的放大器数目也就减少到仅4~5个。连接到一个光纤结点的典型用户数是500左右,但不超过2000

image.png

要使现有的模拟电视机能够接收数字电视信号,需要把一个叫做机顶盒 (set-top box)的设备连接在同轴电缆和用户的电视机之间。但为了使用户能够利用HFC网接入到互联网,以及在上行信道中传送交互数字电视所需的一些信息,我们还需要增加一个为HFC网使用的调制解调器,它又称为电缆调制解调器 (cablem odem)。电缆调制解调器可以做成一个单独的设备(类似于ADSL的调制解调器),也可以做成内置式的,安装在电视机的机顶盒里面。用户只要把自己的计算机连接到电缆调制解调器,就可方便地上网了。

电缆调制解调器不需要成对使用,而只需安装在用户端。电缆调制解调器比ADSL使用的调制解调器复杂得多,因为它必须解决共享信道中可能出现的冲突问题。在使用ADSL调制解调器时,用户计算机所连接的电话用户线是该用户专用的,因此在用户线上所能达到的最高数据率是确定的,与其他ADSL用户是否在上网无关。但在使用HFC的电缆调制解调器时,在同轴电缆这一段用户所享用的最高数据率是不确定的,因为某个用户所能享用的数据率大小取决于这段电缆上现在有多少个用户正在传送数据。有线电视运营商往往宣传通过电缆调制解调器上网可以达到比ADSL更高的数据率(例如达到10Mbit/s甚至30Mbit/s),但只有在很少几个用户上网时才可能会是这样的。然而若出现大量用户(例如几百个)同时上网,那么每个用户实际的上网速率可能会低到难以忍受的程度。

光纤到户 与 FTTx

光纤到户就是把光纤一直铺设到用户家庭。只有在光纤进入用户的家门后,才把光信号转换为电信号。这样做就可以使用户获得最高的上网速率。

但光纤到户FTTH有两个问题:首先是目前的价格还不够便宜;其次是一般的家庭用户也并没有这样高的数据率的需求。要在网上流畅地观看视频节目,有数兆比特每秒的数据率就可以了,不一定非要使用100Mbit/s或更高的数据率。(目前基本上是光纤到户了)

为了有效地利用光纤资源,在光纤干线和广大用户之间,还需要铺设一段中间的转换装置即光配线网 ODN(Optical Distribution Network),使得数十个家庭用户能够共享一根光纤干线。

图2-25是现在广泛使用的`无源光配线网的示意图。“无源”表明在光配线网中无须配备电源,因此基本上不用维护,其长期运营成本和管理成本都很低。无源的光配线网常称为无源光网络 PON(Passive Optical Network)。

image.png

光线路终端 OLT(Optical Line Terminal)是连接到光纤干线的终端设备。OLT把收到的下行数据发往无源的1:N光分路器 (splitter),然后用广播方式向所有用户端的光网络单元 ONU(Optical Network Unit)发送。典型的光分路器使用分路比是1:32,有时也可以使用多级的光分路器。

每个ONU根据特有的标识只接收发送给自己的数据,然后转换为电信号发往用户家中。每一个ONU到用户家中的距离可根据具体情况来设置,OLT则给各ONU分配适当的光功率。如果ONU在用户家中,那就是光纤到户FTTH了。

重点

  1. 物理层的主要任务就是确定与传输媒体的接口有关的一些特性,如机械特性电气特性功能特性过程特性
  2. 一个数据通信系统可划分为三大部分,即源系统传输系统目的系统。源系统包括源点(或源站、信源)和发送器,目的系统包括接收器和终点(或目的站,或信宿)。
  3. 通信的目的是传送消息。如话音、文字、图像、视频等都是消息。数据是运送消息的实体。信号则是数据的电气或电磁的表现。
  4. 根据信号中代表消息的参数的取值方式不同,信号可分为模拟信号(或连续信号)和数字信号(或离散信号)。代表数字信号不同离散数值的基本波形称为码元
  5. 根据双方信息交互的方式,通信可以划分为单向通信(或单工通信)、双向交替通信(或半双工通信)和双向同时通信(或全双工通信)。
  6. 来自信源的信号叫做基带信号。信号要在信道上传输就要经过调制。调制有基带调制带通调制之分。最基本的带通调制方法有调幅调频调相。还有更复杂的调制方法,如正交振幅调制。
  7. 要提高数据在信道上的传输速率,可以使用更好的传输媒体,或使用先进的调制技术。但数据传输速率不可能被任意地提高。
  8. 传输媒体可分为两大类,即导引型传输媒体(双绞线、同轴电缆或光纤)和非导引型传输媒体(无线或红外或大气激光)。
  9. 常用的信道复用技术有频分复用时分复用统计时分复用码分复用波分复用(光的频分复用)。
  10. 最初在数字传输系统中使用的传输标准是脉冲编码调制PCM。现在高速的数字传输系统使用同步光纤网SONET(美国标准)或同步数字系列SDH(国际标准)。
  11. 用户到互联网的宽带接入方法有非对称数字用户线ADSL(用数字技术对现有的模拟电话用户线进行改造)、光纤同轴混合网HFC(在有线电视网的基础上开发的)和FTTx(即光纤到……)
  12. 为了有效地利用光纤资源,在光纤干线和用户之间广泛使用无源光网络PON。无源光网络无须配备电源,其长期运营成本和管理成本都很低。最流行的无源光网络是以太网无源光网络EPON吉比特无源光网络GPON